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LE'lTER TO THE EDITOR 

Low temperature Ising model series and the ratio method 

C J Pearcet and M J Buckingham 
University of Western Australia, Nedlands, Western Australia, 6009 

Received 18 June 1976 

Abstract. A transformation is applied to low temperature series for the FCC Ising model, 
which enables the ratio method to be used in their extrapolation, and apparently more 
precise estimates to be made of the critical exponents than hitherto. These estimates are 
consistent with the scaling value of o'= 1/8, and strongly favour the value of y' = 5/4 over 
the previous estimates of around 1.28; they thus counter previous evidence for a possible 
violation of scaling in this model. 

The low temperature series for the three-dimensional Ising model have long presented 
difficulty in extrapolation. An outline of the problems involved is given in, for example, 
the article by Guttmann et af (1970). No direct ratio analysis is possible because the 
series do not in general converge up to the physical singularity, and Pad6 analysis has 
suggested values of the critical exponents which appear to be at variance with scaling 
predictions. In particular, for the cubic lattices the Pad6 estimates for the susceptibility 
exponent y' lie typically in the range 1.28 f 0.03 instead of around the expected scaling 
value of 1.25, and the estimates for the specific heat exponent a' are generally about 0.2 
or higher, as against the accepted scaling value of 0.125. Clearly an alternative means 
of estimating the exponents is desirable. Guttmann er a1 (1970) applied various 
transformations to the series and were successful in obtaining new series which 
converged up to the critical singularity; unfortunately the non-physical singularities 
were too close to the circle of convergence for the coefficients to be extrapolated by the 
ratio method. 

We report a new analysis based on a systematic choice of the transformation 
function. We have developed a method for such choice (Pearce 1975) which makes full 
use of the details of the singularity distribution of the original function (so far as this can 
be determined from Pad6 analysis). Using this method we obtain transformed series 
which are apparently dominated by the physical singularity and yield smooth ratio 
sequences. We here confine our attention to the low temperature series for the FCC 
lattice since the published series for this lattice are sufficiently long for the asymptotic 
behaviour of the coefficients to be fairly well determined. 

The expansion variable for the low temperature Ising series is z = exp(-4J/kT) 
where J is the spin-spin interaction energy, k Boltzmann's constant and T the 
temperature. An indication of the distribution of singularities in the z-plane for the 
thermodynamic functions may be obtained from Pad6 analysis, and was calculated by 
Guttmann (1969) who used the method of N-point fits. The physical singularity occurs 
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at z, = 0.6647 and the non-physical singularities at za, = a ,  U *  = 0.0725 f 0-533i and 
at 26, zg = 6, b* = -0,446 f 0.28i. In the present approach the transformation to a new 
variable u = u(z) was chosen so as to have the following properties: (u(z)l large in the 
neighbourhoods of za, zx,  zb ,  22; u ( z )  real and monotonically increasing from zero 
along the positive real axis; and u(z) analytic with du/dz non-zero for all z within the 
contour in the z-plane defined by lu (z) l=  u(z,) and which encloses the origin. The 
function chosen was 

u = z/[(l -z /u)( l  -z/a*)(1 -~/6)(1-2/6*)]~ '~.  

t . 
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F- 1. Distribution of singularities in the complex plane of the expansion variable: (a) 
before and (6 )  after the transformation. H indicates the physical singularity and 0 a 
non-physical singularity. The circle indicates the so called 'physical disc'. 

Given the uncertainties in the locations of the non-physical singularities, it is possible to 
say only that these singularities are mapped somewhere outside the circle (U/ = 2.0 in 
the u-plane. The inverse function z ( u )  will also have a number of singularities in this 
plane, the approximate locations of which are most conveniently determined by Pad6 
analysis. It is found that these are a distance from the origin comparable to (but larger 
than) that of U,: thus the transformation effectively replaces the original non-physical 
singularities with a set arising from the transformation function itself. The physical 
singularity is mapped to U, 2: 0.416, the next-nearest singularity in the u-plane being at 
a distance of approximately 1 . 4 ~ ~  from the origin, which suggests that the ratio method 
might be usefully employed. The singularity distributions before and after the transfor- 
mation are shown in figure 1. For this transformation (du/d~) ,~=0.33,  and the 
dominant singular form of the physical singularity is preserved. Both the susceptibility 
and specific heat series, taken from Sykes et a1 (1965, 1973), begin with z6,  and the 
actual series transformed were those for 

Z-6X(Z)/4 and z-6CH(z)/k(ln z)*. 

Since z ,  is known from the high temperature series to a much greater precision than 
that obtainable from the present series, we have plotted for the transformed series 
sequences of exponent estimates rather than the ratios. Specifically we have used (see 
Hunter and Baker 1973) 

yA(r)'= l+n(u,r,-l)=y'+O(l/n) 
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and the corresponding quantity aL(r) for the specific heat exponents, where r, are the 
ratios of successive coefficients. In addition, a sequence of exponent estimates was 
obtained from the logarithmic derivative of the transformed series: 

where 6, are the coefficients of this series. The exponent estimate sequences are given 
for n 5 10 in table 1, and are shown plotted against l /n  in figure 2. 

Table 1. Sequences of exponent estimates aL(r) ,  a:(ld), y; ( r )  and yA(ld) with n 2 10 for the 
specific heat and the susceptibility. 

10 1.1403 
11 0.3403 
12 0.2226 
13 0-2470 
14 0.2063 
15 0.0275 
16 -0.0038 
17 -0.0273 
18 -0.0771 
19 -0.1348 
20 -0,1560 
21 -0.1787 
22 -0.2058 
23 -0.2276 
24 -0.2382 
25 -0.2480 
26 -0.2563 
27 -0.2603 
28 -0.2603 
29 -0.2593 
30 -0.2567 
31 -0.2521 
32 -0.2462 
33 -0.2398 
34 -0.2326 

0.6322 
0.5672 
0.5078 
0.4614 
0.3983 
0.3719 
0.3459 
0.3260 
0.3068 
0.2946 
0.2833 
0.2745 
0.2666 
0.2605 
0.2554 
0.2513 
0.2475 
0.2445 
0.2419 
0.2395 
0.2373 
0.2353 
0.2334 
0.2316 
0.2299 

1.7893 
1.1911 
1.1309 
1.2174 
1.2349 
1.1612 
1,1792 
1,2032 
1.2042 
1.1992 
1.2100 
1.2174 
1.2194 
1.2219 
1,2269 
1.2302 
1.2323 
1.2347 
1.2372 
1,2389 
1.2402 
1.2414 
1.2425 
1.2431 
1.2437 

1.2988 
1.2844 
1.2735 
1.2824 
1.2453 
1.2457 
1.2451 
1.2496 
1-2454 
1.2485 
1,2517 
1.2558 
1.2578 
1.2615 
1.2656 
1.2694 
1.2726 
1,2759 
1.2790 
1.2815 
1.2833 
1.2849 
1.2859 
1.28634 
1.28638 

Comparison with published results (see for example Gaunt and Sykes 1973) shows 
that the values of aL(1d) and yA(ld) are similar to those of Pad6 estimates for a‘ and y’ 
obtained using the same number of terms; in particular, the last few values of yL(ld) are 
nearly level at 1.28, but their trend suggests that this is a maximum and that the values 
will decrease again for larger n. The ratio estimates for a’ can at best be said to be 
consistent with the value of 1/8 (and rather more so than with a’= O ) ,  but those for y’ 
unequivocally favour the scaling value of 5/4, in preference to the other rational value, 
mentioned in the literature, of 21/16 (1.3125). This work therefore gives no support to 
the apparent discrepancy, based on earlier studies, between the values of y and y’. It 
appears furthermore that, at least for the susceptibility, the final asymptotic behaviour 
of the series coefficients is displayed; the subsequent assumption of the value y’ = 5/4 
then enables information to be obtained directly about higher-order contributions to 
the critical singularity. Details of this will be given in a subsequent publication. 
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Figare 2. Sequences of exponent estimates calculated from the ratios (+) and from the 
logarithmicderivative series ( X ) .  ( a )  Specific heat exponent U‘; (6) susceptibility exponent 
y’. The broken lines indicate likely asymptotes for the ratio sequences. 

As further coefficients in the transformed series are obtained, the effect of the 
non-physical singularities is expected to decrease exponentially, and the accuracy of the 
exponent estimates to improve correspondingly. Thus on the basis of the present work 
it appears to be worthwhile extending the series to higher terms. In addition, a few 
more terms in the specific heat series would greatly strengthen the evidence on the final 
asymptotic singular behaviour, and in the susceptibility series would establish whether 
the yA(ld) values do in fact decrease smoothly from the apparent maximum at 
approximately 1 e286. A full account of the present approach to series transformations, 
together with details of transformations corresponding to other series will be given in a 
later publication. 
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